Precision background subtraction in dihadron and jet-hadron correlations

with a re-analysis of STAR results

Based on nucl-ex/1509.04732 accepted to PRC Contributions from Natasha Sharma, Joel Mazer, Meg Stuart, Aram Bejnood

Background for jet studies

- New method for subtracting combinatorial background from flow (nucl-ex/1509.04732 accepted to PRC)
- Improvements on new method
- Reanalysis of published STAR data (nucl-ex/1010.0690)

Background in correlations

All reaction plane angles

$$B(1+\sum_{n=2}^{\infty}v_n^tv_n^a\cos(n\Delta\varphi))$$

- When trigger is restricted relative to reaction plane
 - Background level modified

$$B = 1 + \sum_{k=2}^{\infty} 2 v_k^a v_k^{R,t} \cos(k \varphi_S) \frac{\sin(kc)}{kc} R_n$$

- Effective v_n modified

$$v_{n}^{R,t} = \frac{v_{n} + \cos\left(n \, 8_{S}\right) \frac{\sin\left(nc\right)}{nc} R_{n} + \sum_{k=2,4,6...}^{\infty} \left(v_{k+n} + v_{k-n}\right) \cos\left(k \, \varphi_{S}\right) \frac{\sin\left(kc\right)}{kc} R_{n}}{1 + \sum_{k=2,4,6...}^{\infty} 2 \, v_{k} \cos\left(k \, \varphi_{S}\right) \frac{\sin\left(kc\right)}{kc} R_{n}}, n = even \quad \underbrace{\text{Reaction}}_{\text{plane}}$$

 ϕ_s is the angular threshold

$$R_n = \langle \cos(n(\psi_{true} - \psi_{reco})) \rangle$$

Phys.Rev. C69 (2004) 021901 arXiv:nucl-ex/0311007

Background Subtraction Methods

- Zero-Yield at Minimum (ZYAM): Assumes v_n from other studies, assumes region around $\Delta \phi \approx 1$ is background dominated
- Near-Side Fit (NSF): assumes small $\Delta \phi$ /large $\Delta \eta$ region background dominated, fits v_n and B
- Reaction Plane Fit (RPF): assumes small $\Delta \phi$ /large $\Delta \eta$ region background dominated, fits v_n and B using reaction plane dependence
- Near-Side Subtracted NSF/RPF (NSS NSF/RPF): fits v_n and B at small $\Delta \phi$ using reaction plane dependence after subtracting the near-side with a fit

Toy model

Model for background

- True reaction plane angle is always at $\varphi=0$ in detector coordinates
- Throw random reconstructed reaction plane angle
 - Assume Gaussian reaction plane resolution
 - Selected to approximate data
- Use measured particle yields to calculate how many associated particles would be measured
- Use measured v_n to determine their anisotropy relative to the reaction plane
- Throw associated particles matching distribution observed in data using v_n up to n=10

Model for signal

- Use PYTHIA Perugia 2011
- π^{\pm} , K^{\pm} , p, p for unidentified hadrons
- Quarks and gluons as proxy for reconstructed jets

Acceptance correction

- Fixed acceptance cuts leads to a trivial structure due to acceptance
- This is fixed with a "mixed event" correction

- Throw random trigger, associated particle within

acceptance

- Calculate $\Delta \varphi$, $\Delta \eta$

 Use this distribution to correct for acceptance

Separating the signal and the background

Separating signal+background

Near-Side Fit (NSF) method

No reaction plane dependence

- Project signal+background over 1.0< $|\Delta\eta|$ <1.4
- Fit background in $|\Delta \varphi| < \pi/2$ with v_n up to n=4

Near-Side Fit (NSF) method

No reaction plane dependence

- Reconstructs signal with less bias and smaller errors than ZYA1 method
- Extract v_n consistent with input

Sample		Yield $(Y \times 10^{-3})$				
		near-side	away-side			
	True	$17.1 \pm 0.1 \pm 0.2$	$19.9 \pm 0.1 \pm 0.2$			
30 - 40%	Mod. ZYA1	$18.9 \pm 4.2 \pm 1.2$	$21.9 \pm 4.2 \pm 1.2$			
h-h	Std. ZYA1	$15.7 \pm 1.6 \pm 1.2$	$18.7 \pm 1.6 \pm 1.2$			
	NSF	17.14 ± 1.1	20.14 ± 1.11			

h-h

$$\sqrt{s_{NN}} = 2.76 \text{ TeV}$$

 $30\text{-}40\% \text{ PbPb}$
 $8 < p_{T}^{\text{trigger}} < 10 \text{ GeV/c}$
 $1 < p_{T}^{\text{assoc}} < 2 \text{ GeV/c}$

Standard ZYA1 = Zero Yield at $\Delta\Phi$ =1 Modified ZYA1 = Zero Yield at $\Delta\Phi$ =1 for 1.0< $|\Delta\eta|$ <1.4

Near-Side Fit (NSF) method

No reaction plane dependence

- Project signal+background over $1.0 < |\Delta \eta| < 1.\overline{4}$
- Fit background in $|\Delta \phi| < 1$
- Not reliable over narrower $\Delta \phi$ region

Adding reaction plane dependence

Reaction Plane Fit (RPF) method

30-40% central

- Project signal+background over $1.0 < |\Delta \eta| < 1.4$
- Fit background in $|\Delta \phi|$ <1 including reaction plane dependence
- v_n and B extracted with v_n up to n=4

Reaction Plane Fit (RPF) method

30-40% central

	near-side $Y \times 10^{-5}$			away-side $Y \times 10^{-5}$				
	in-plane	mid-plane	out-of-plane	All	in-plane	mid-plane	out-of-plane	All
True	$5.78 \pm 0.03 \pm 0.13$	$5.77 \pm 0.03 \pm 0.14$	$5.65 \pm 0.03 \pm 0.13$	$17.1 \pm 0.1 \pm 0.2$	$6.74 \pm 0.03 \pm 0.13$	$6.72 \pm 0.03 \pm 0.14$	$6.52 \pm 0.03 \pm 0.13$	$19.9 \pm 0.1 \pm 0.2$
Mod. ZYA1	$6.3 \pm 5.9 \pm 1.7$	$5.7 \pm 6.0 \pm 0.3$	$6.8 \pm 6.1 \pm 0.9$	$18.9 \pm 4.2 \pm 1.2$	$7.3 \pm 5.9 \pm 1.7$	$6.8 \pm 6.0 \pm 0.3$	$7.7 \pm 6.1 \pm 0.9$	$21.9 \pm 4.2 \pm 1.2$
Std. ZYA1	$4.5 \pm 2.3 \pm 1.7$	$5.5 \pm 2.3 \pm 0.3$	$5.6 \pm 2.3 \pm 0.9$	$15.7 \pm 1.6 \pm 1.2$	$5.5 \pm 2.3 \pm 1.7$	$6.5 \pm 2.3 \pm 0.3$	$6.5 \pm 2.3 \pm 0.9$	$18.7 \pm 1.6 \pm 1.2$
RPF $(\Delta \phi < \pi/2)$	5.5 ± 0.4	5.7 ± 0.3	5.9 ± 0.3	17.0 ± 0.7	6.6 ± 0.4	6.8 ± 0.3	6.8 ± 0.3	20.1 ± 0.7
RPF $(\Delta \phi < 1)$	5.7 ± 0.4	5.8 ± 0.4	5.9 ± 0.3	17.4 ± 0.7	6.8 ± 0.4	6.8 ± 0.4	6.8 ± 0.3	20.4 ± 0.7

16

Going to lower momenta

Low momenta

- ZYAM assumptions break down at low p_T
- If method doesn't work on PYTHIA, it can't be trusted on data!
- But low p_T is interesting!

Going to lower momenta, medium modifications

- Peak gets broader
- Fit near-side peak and subtract it
- Increase $\Delta \eta$ range available for background subtraction

Near-Side Subtracted RPF method

30-40% central

- Project signal+background over $0.0 < |\Delta \eta| < 1.4$
- Fit background in $|\Delta \phi|$ <1 including reaction plane dependence
- v and B extracted with v up to n=4

Reaction Plane Fit (RPF) method

30-40% central

Works beautifully!

STAR data

STAR measurements of dihadron correlations relative to reaction plane

- Correlations on arxiv (nucl-ex/1010.0690 v2)
 - Published article (Phys. Rev. C 89 (2014) 41901) does not include raw correlations
- ZYAM background subtraction
 - Reports ridge at $\Delta \eta > 0.7$

- RPF method assumes no signal at $\Delta \eta > 0.7$

RPF Method

- 6 bins relative to reaction plane
- Background level
 - Normalized per trigger \rightarrow B same in all bins if v_2^t is the only effect \rightarrow reduces info for RPF
 - "The background levels can be different for the different ϕ_s slices because of the net effect of the variations in jet-quenching with ϕ_s and the centrality cuts in total charged particle multiplicity in the TPC within $|\eta| < 0.5$." (Pg. 10, arxiv version) \rightarrow Not consistent with ZYAM assumptions!
- Used reaction plane resolution values from paper and their uncertainties
 - Used TPC for reaction plane and analysis potential autocorrelations
- Data available for $\Delta \eta$ < 0.7 (signal+background) and 0.7< $\Delta \eta$ < 2 (background dominated)
 - Acceptance correction in not applied → background must be scaled → uncertainty
 - Jet-like correlation not eliminated in $0.7 < \Delta \eta < 2$ for all p_T^t , p_T^a given in paper \rightarrow focus on high p_T

Christine Nattrass (UTK), High pT Physics in the RHIC-LHC Era, April 2016

Background subtracted correlations 4<p_t<6 GeV/c

Yields – STAR

- Large error bars (shown as lines)
- Indications of reaction plane dependence?

Yields 4<p_t<6 GeV/c

- Lines show averages
- No dependence on $\phi_S = \phi^t \psi$
- Higher precision than public analysis (different p_T)

RMS - STAR

- Large error bars (shown as lines)
- Strong reaction plane dependence

Truncated RMS 4<p_t<6 GeV/c

- Lines show averages
- Higher precision than public analysis (different p_T)

Competing effects

Quenching Fewer jets, lower yield out of plane

Bremsstrahlung Softer, higher yield out of plane

Conclusions

- NSF, RPF, NSS(NSF/RPF) methods work!
 - Much higher precision than ZYAM
 - NSS works to extend analyses to low p_T
- Qualitatively different results from public STAR analysis
 - Little/no reaction plane dependence in yield, RMS at these momenta
 - Away-side does not disappear completely, comparable to d+Au
 - More subtle effects than with ZYAM

PYTHIA at 200 GeV

PYTHIA at 200 GeV

Christine Nattrass (UTK), High pT Physics in the RHIC-LHC Era, April 2016

Near-Side Subtracted NSF method

- Project signal+background over $0.0 < |\Delta \eta| < 1.4$
- Fit background in $|\Delta \varphi|$ <1 including reaction plane dependence
- Bias from residual contamination by near-side

Correlations - STAR

- Large error bars
- "Mach Cone" evident, even decrease in amplitude for higher p_T^t

Background subtracted correlations 4<p_t<6 GeV/c

Statistical error bars include correlated statistical error on background No "Mach Cone"

v₂ STAR vs Fit

	v ₂ STAR (Table I)	v ₂ Fit (stat. errors only)		
1.5 <p<sub>T<2.0 GeV/c</p<sub>	0.164 ± 0.011	0.194 ± 0.008		
2.0 <p<sub>T<3.0 GeV/c</p<sub>	0.189 ± 0.012	0.237 ± 0.010		
3.0 <p<sub>T<4.0 GeV/c</p<sub>	0.194 ± 0.013	0.293 ± 0.058		
4.0 <p<sub>T<6.0 GeV/c</p<sub>	0.163 ± 0.020	0.073 ± 0.025 0.036 ± 0.033 0.033 ± 0.068		

- Centrality bin is 20-60% proper weighting of average?
- Bias in event selection with high p_T trigger?
- Bias in reconstructed reaction plane in the presence of a jet?
- Residual jet-like signal in background dominated region?
- Less information in fit due to normalization by $N_{trigger}$?